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Abstract. The local time transformation used in path integration is shown to be equivalent
to standard procedures applied to Schrédinger’s equation.

Since Duru and Kleinert {1] introduced the idea of local time rescaling in path
integration this method has been applied very successfully in recent years. By repara-
metrizing the paths with a new, in general, path dependent time many problems have
become solvable by path integration. However, there exists no rigorous proof for the
validity of this procedure. The local time rescaling technique should be understood as
a recipe. For a detailed discussion we refer to the work of Inomata [2-4].

In this letter we want to show that the recipe mentioned above is equivalent to
standard techniques for the solution of Schrodinger’s equation. First we present the
general treatment which transforms the stationary Schrodinger equation for a given
potential V(x) into one for a potential V(z) with fixed energy E = V,, whose solutions
¢.(z) and E are assumed to be known. The energy eigenfunctions ®,(x) and energy
eigenvalues E, of the original problem are then expressed in terms of ¢,(z) and E,.
Secondly, we present the time transformation technique of path integration and show
its similarity to the methods used for Schrodinger’s equation.

Let us consider the stationary Schrédinger equation for a one-dimensional particle
with mass M in the potential V(x)

2 2M
(‘-%5—? v +23 E )cp(x)=o. (1)
If the solution of (1) is not known by standard techniques like factorization, algebraiz-
ation or direct identification with hypergeometric or confluent hypergeometric function
one usually tries to transform (1) into another Schrédinger equation whose solution
is know by one of the above methods [5, 6]. Hence, the general ansatz we can start
with is

x=f(z) @ (x) =g(2)¢(2) (2)
which should satisfy a differential equation similar to (1)
d®> 2M .
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We assume that the solution of this problem is known and given by ¢,(z) and E,. For
simplicity we assume a discrete spectrum only. Using standard calculus one obtains
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where f'=f'(z) =df(z)/dz and similar for g(z) and ¢(z). Obviously the vanishing of

the term linear in ¢'(z) implies the condition 2f'(z)g'(z) = g(z) f"(z) which leads to
g(z)=cv f'(z). (5)

In the above c is a constant of integration. Inserting this result in (1) and comparing
it with (3) gives

0=V @-E1-a (FE2(LE)) @
E(E)= Y. (7)

Here V, is an arbitrary constant and may be chosen to zero without loss of generality.
- Hence, the solution of the original problem (1) may be expressed in terms of the
solution of (3)

®,(x) = eV TE) @n(2) ®)
{E,}={E|E,(Ey="Vo}. - (9)

The constants ¢, may be obtained by normalization and z = f~'(x). It is interesting to
note that the additional potential appearing in (6) due to the kinetic term (4) is
proportional to the Schwarz derivative of f(z)

_f"2) 3 (f"(Z))2
@ 2\r (/"

Now we will show that the local time rescaling in path integration is equivalent to
the above procedure for Schrédinger’s equation. The aim of time transformation is to
change the path integral for a non-integrable problem into one whose path integral
solution is known. These are the harmonic oscillator with additional inverse square
potential [7], the Poschl-Teller and modified Poschl-Teller potential [8]. The starting
point is the functional integral for the promotor [2-4]

MW N M /2 N—
P " l; — 1‘ i fl - d X
(x", x"y 7) lim J. ;I_—Il e ,-I=Il ( i ﬁ'r,-) j];[l X; (10)

Ff(z)=

where

M
“G=;(A%)2“V(J€;)’G+E’I} (11)
J
is Hamilton’s characteristic functionand r=X% ,Zt 7, A% = X; — X;_y, X" = Xn and X' = x,.
The promotor itself has no physical interpretation. However, the energy dependent
Green function is obtained by integration:

oc

G(x",x", E)= rl;{ J P(x", x'; r)dr. (12)

0
The nonlinear transformation x = f(z), which is the same as in (2), is accompanied
by a local rescaling of the time intervals [2-4]

7= h(z)h(z;-,)o; (13)
with the global scaling property |

r=h(z")h(z)o o (14)
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The requirement that the kinetic term (Ax;)?/ 7, be changed into a kinetic term in
z-space and o-time, namely (Az;)*/o;, leads to the condition ,

h(z)=f"(z). | | (15)

Note that in path integration (Az,-)2= 0(o;) and therefore terms up to 0((Azj)“) have
to be considered in the expansion of the kinetic term in (11). A detailed calculation gives

P(x", x'; ) =[f(2)f' ()72 K (2", 2'; o) exp{(i/ h) Voor} (16)
where
. N mE 1/2 Ny
K " r, = 1‘ 1, i i
(", 25 o) JH&;J e I (27rihcrj) Il dz (17)

is a path integral for the propagator of a particle evolving with time o in the potential
V(z) given in (6). The corresponding short time action reads

~ M e

With the help of (12) and (14) we express the Green function as
1 * . s
G(x",x"; E) = LF1(2)f'(z)]7? J K(z" 2'; ) €M% dg. (19)
0

After path integration the unphysical propagator (17) may be written as
R(z",2'; 0) =Y exp{—(i/ h) E,o} e, (z")0}(2). (20)

Again we have assumed a discrete spectrum only.
Now the Green function can be calculated and yields

@ (2")en(z)

" ’, — 1 ! ry oy11/2 n .
GG, x; E)=Lf ()f ()] P Lo e (21)
A comparison with the standard form
v o By=y 2n(X)PH(x")
G(xsxsE)"z": E—En (22)

leads to the wavefunctions (8) with ¢, =[(3E(E)/dE)|g-£, 1 "/* and the energy spec-
trum is that given in (9).

In this letter we have shown that the local time transformation technique is
equivalent to standard procedures in solving the Schrodinger equation. The recipe for
nonlinear space transformation accompanied by a rescaling of time slices in path
integration gives the same result as substitution of dependent and independent variable
in Schrodinger’s equation.
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